

    
      
          
            
  
XWorkflows

XWorkflows is a library designed to bring a simple approach to workflows in Python.

It provides:


	Simple workflow definition


	Running code when performing transitions


	Hooks for running extra code before/after the transition


	A hook for logging performed transitions




You can also refer to the django_xworkflows [http://github.com/rbarrois/django_xworkflows] project for integration with Django.



Getting started

First, install the xworkflows [http://pypi.python.org/pypi/xworkflows] package:

pip install xworkflows






Declaring workflows

You can now define a Workflow:

import xworkflows

class MyWorkflow(xworkflows.Workflow):
    states = (
        ('init', "Initial state"),
        ('ready', "Ready"),
        ('active', "Active"),
        ('done', "Done"),
        ('cancelled', "Cancelled"),
    )

    transitions = (
        ('prepare', 'init', 'ready'),
        ('activate', 'ready', 'active'),
        ('complete', 'active', 'done'),
        ('cancelled', ('ready', 'active'), 'cancelled'),
    )

    initial_state = 'init'







Applying a workflow

In order to apply that workflow to an object, you must:


	Inherit from xworkflows.WorkflowEnabled


	Define one (or more) class attributes as Workflow instances.




Here is an example:

class MyObject(xworkflows.WorkflowEnabled):
    state = MyWorkflow()







Using the transitions

With the previous definition, some methods have been magically added to your object
definition (have a look at WorkflowEnabledMeta to see how).

There is now one method per transition defined in the workflow:

>>> obj = MyObject()
>>> obj.state
<StateWrapper: <State: 'init'>>
>>> obj.state.name
'init'
>>> obj.state.title
'Initial state'
>>> obj.prepare()
>>> obj.state
<StateWrapper: <State: 'ready'>>
>>> obj.state.name
'ready'
>>> obj.state.title
'Ready'





As seen in the example above, calling a transition automatically updates the state
of the workflow.

Only transitions compatible with the current state may be called:

>>> obj.state
<StateWrapper: <State: 'ready'>>
>>> obj.complete()
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
InvalidTransitionError: Transition 'complete' isn't available from state 'ready'.







Custom transition code

It is possible to define explicit code for a transition:

class MyObject(xworkflows.WorkflowEnabled):
    state = MyWorkflow()

    @xworkflows.transition()
    def activate(self, user):
        self.activated_by = user
        print("State is %s" % self.state.name)

obj = MyObject()





When calling the transition, the custom code is called before updating the state:

>>> obj.state
<StateWrapper: <State: 'init'>>
>>> obj.prepare()
>>> obj.state
<StateWrapper: <State: 'ready'>>
>>> obj.activate('blah')
State is ready
>>> obj.state
<StateWrapper: <State: 'active'>>
>>> obj.activated_by
'blah'







Hooks

Other functions can be hooked onto transitions, through the before_transition(),
after_transition(), transition_check(),
on_enter_state() and on_leave_state() decorators:

class MyObject(xworkflows.WorkflowEnabled):
    state = MyWorkflow()

    @xworkflows.before_transition('foobar', 'gobaz')
    def hook(self, *args, **kwargs):
        pass








Contents



	Reference
	Defining a workflow

	Using a workflow

	Using transitions





	Internals
	Exceptions

	States

	Workflows

	Applying workflows

	Customizing transitions





	ChangeLog
	1.1.1 (unreleased)

	1.1.0 (2021-04-29)

	1.0.4 (2014-08-11)

	1.0.3 (2014-01-29)

	1.0.2 (2013-09-24)

	1.0.1 (2013-09-24)

	1.0.0 (2013-04-29)

	0.4.1 (2012-08-03)

	0.4.0 (2012-08-02)

	0.3.2 (2012-06-05)

	0.3.1 (2012-05-29)

	0.3.0 (2012-04-30)

	0.2.4 (23 04 2012)

	0.2.3 (15 04 2012)

	0.2.1 (26 03 2012)

	0.1.0 (08 09 2011)











Resources


	Package on PyPI: http://pypi.python.org/pypi/xworkflows


	Repository and issues on GitHub: http://github.com/rbarrois/xworkflows


	Doc on http://readthedocs.org/docs/xworkflows/






Indices and tables


	Index


	Module Index


	Search Page







          

      

      

    

  

    
      
          
            
  
Reference

The XWorkflow library has two main aspects:


	Defining a workflow;


	Using a workflow on an object.





Defining a workflow

A workflow is defined by subclassing the Workflow class, and setting
a few specific attributes:

class MyWorkflow(xworkflows.Workflow):

    # The states in the workflow
    states = (
        ('init', _(u"Initial state")),
        ('ready', _(u"Ready")),
        ('active', _(u"Active")),
        ('done', _(u"Done")),
        ('cancelled', _(u"Cancelled")),
    )

    # The transitions between those states
    transitions = (
        ('prepare', 'init', 'ready'),
        ('activate', 'ready', 'active'),
        ('complete', 'active', 'done'),
        ('cancel', ('ready', 'active'), 'cancelled'),
    )

    # The initial state of objects using that workflow
    initial_state = 'init'





Those attributes will be transformed into similar attributes with friendlier APIs:


	states is defined as a list of two-tuples
and converted into a StateList


	transitions is defined as a list of three-tuples
and converted into a TransitionList


	initial_state is defined as the name
of the initial State of the Workflow and converted into
the appropriate State





Accessing Workflow states and transitions

The states attribute, a StateList instance,
provides a mixed dictionary/object API:

>>> MyWorkflow.states.init
State('init')
>>> MyWorkflow.states.init.title
u"Initial state"
>>> MyWorkflow.states['ready']
State('ready')
>>> 'active' in MyWorkflow.states
True
>>> MyWorkflow.states.init in MyWorkflow.states
True
>>> list(MyWorkflow.states)  # definition order is kept
[State('init'), State('ready'), State('active'), State('done'), State('cancelled')]





The transitions attribute of a
Workflow is a TransitionList instance,
exposing a mixed dictionary/object API:

>>> MyWorkflow.transitions.prepare
Transition('prepare', [State('init')], State('ready'))
>>> MyWorkflow.transitions['cancel']
Transition('cancel', [State('ready'), State('actuve')], State('cancelled'))
>>> 'activate' in MyWorkflow.transitions
True
>>> MyWorkflow.transitions.available_from(MyWorkflow.states.ready)
[Transition('activate'), Transition('cancel')]
>>> list(MyWorkflow.transitions)  # Definition order is kept
[Transition('prepare'), Transition('activate'), Transition('complete'), Transition('cancel')]








Using a workflow

The process to apply a Workflow to an object is quite straightforward:


	Inherit from WorkflowEnabled


	Define one or more class-level attributes as foo = SomeWorkflow()




These attributes will be transformed into StateProperty objects,
acting as a wrapper around the State held in the object’s internal __dict__.

For each transition of each related Workflow, the WorkflowEnabledMeta metaclass
will add or enhance a method for each transition, according to the following rules:


	If a class method is decorated with transition('XXX') where XXX is the name of a transition,
that method becomes the ImplementationWrapper for that transition


	For each remaining transition, if a method exists with the same name and is decorated with
the transition() decorator, it will be used for the ImplementationWrapper
of the transition. Methods with a transition name but no decorator will raise a TypeError – this ensures that
all magic is somewhat explicit.


	For all transitions which didn’t have an implementation in the class definition, a new method is added to the class
definition.
They have the same name as the transition, and a noop() implementation.
TypeError is raised if a non-callable attribute already exists for a transition name.





Accessing the current state

For a WorkflowEnabled object, each <attr> = SomeWorkflow() definition
is translated into a StateProperty object, which adds a few functions
to a plain attribute:


	It checks that any value set is a valid State from the related Workflow:

>>> obj = MyObject()
>>> obj.state = State('foo')
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
ValueError: Value State('foo') is not a valid state for workflow MyWorkflow.







	It defaults to the initial_state of the Workflow if no
value was set:

>>> obj = MyObject()
>>> obj.state
State('init')







	It wraps retrieved values into a StateWrapper, which adds
a few extra attributes:


	Access to the related workflow:

>>> obj.state.workflow
<Workflow: MyWorkflow>







	List of accessible transitions:

>>> obj.state.transitions
[Transition('accept')]







	Easy testing of the current value:

>>> obj.state.is_init
True
>>> obj.state.is_ready
False







	Native equivalence to the state's name:

>>> obj.state == 'init'
True
>>> obj.state == 'ready'
False
>>> obj.state in ['init', 'ready']
True






Note

This behavior should only be used when accessing the State
objects from the Workflow.states list is impossible, e.g comparison
with external data (URL, database, …).

Using State objects or the is_XXX attributes protects
from typos in the code (AttributeError would be raised), whereas
raw strings provide no such guarantee.





	Easily setting the current value:

>>> obj.state = MyWorkflow.states.ready
>>> obj.state.is_ready
True

>>> # Setting from a state name is also possible
>>> obj.state = 'ready'
>>> obj.state.is_ready
True






Note

Setting the state without going through transitions defeats the goal of
xworkflows; this feature should only be used for faster testing or when
saving/restoring objects from external storage.














Using transitions


Defining a transition implementation

In order to link a state change with specific code, a WorkflowEnabled object
must simply have a method decorated with the transition() decorator.

If that method cannot be defined with the name of the related Transition,
the name of that Transition should be passed as first argument to the
transition() decorator:

class MyObject(xworkflows.WorkflowEnabled):

    state = MyWorkflow()

    @xworkflows.transition()
    def accept(self):
        pass

    @xworkflows.transition('cancel')
    def do_cancel(self):
        pass





Once decorated, any call to that method will perfom the following steps:


	Check that the current State of the object is a valid source for
the target Transition (raises InvalidTransitionError otherwise);


	Checks that all optional transition_check() hooks, if defined, returns True
(raises ForbiddenTransition otherwise);


	Run optional before_transition() and on_leave_state() hooks


	Call the code of the function;


	Change the State of the object;


	Call the Workflow.log_transition() method of the related Workflow;


	Run the optional after_transition() and on_enter_state() hooks, if defined.




Transitions for which no implementation was defined will have a basic noop() implementation.



Controlling transitions

According to the order above, preventing a State change can be done:


	By returning False in a custom transition_check() hook;


	By raising any exception in a custom before_transition() or on_leave_state() hook;


	By raising any exception in the actual implementation.






Hooks

Additional control over the transition implementation can be obtained via hooks.
5 kinds of hooks exist:


	transition_check(): those hooks are called just after the State check, and should
return True if the transition can proceed. No argument is provided to the hook.


	before_transition(): hooks to call just before running the actual implementation. They receive
the same *args and **kwargs as passed to the actual implementation (but can’t modify them).


	after_transition(): those hooks are called just after the State has been updated.
It receives:


	res: the return value of the actual implementation;


	*args and **kwargs: the arguments passed to the actual implementation






	on_leave_state(): functions to call just before leaving a state, along with the
before_transition() hooks. They receive the same arguments as a before_transition() hook.


	on_enter_state(): hooks to call just after entering a new state, along with after_transition() hooks. They receive the same arguments as a after_transition() hook.




The hook decorators all accept the following arguments:


	A list of Transition names (for transition-related hooks) or State names (for state-related hooks); if empty, the hook will apply to all transitions:

@xworkflows.before_transition()
@xworkflows.after_transition('foo', 'bar')
def hook(self, *args, **kwargs):
    pass







	As a keyword field= argument, the name of the field whose transitions the hook
applies to (when an instance uses more than one workflow):

class MyObject(xworkflows.WorkflowEnabled):
    state1 = SomeWorkflow()
    state2 = AnotherWorkflow()

    @xworkflows.on_enter_state(field='state2')
    def hook(self, res, *args, **kwargs):
        # Only called for transitions on state2.
        pass







	As a keyword priority= argument (default: 0), the priority of the hook; hooks are applied in
decreasing priority order:

class MyObject(xworkflows.WorkflowEnabled):
    state = SomeWorkflow()

    @xworkflows.before_transition('*', priority=-1)
    def last_hook(self, *args, **kwargs):
        # Will be called last
        pass

    @xworkflows.before_transition('foo', priority=10)
    def first_hook(self, *args, **kwargs):
        # Will be called first
        pass









Hook decorators can also be stacked, in order to express complex hooking systems:

@xworkflows.before_transition('foobar', priority=4)
@xworkflows.on_leave_state('baz')
def hook(self, *args, **kwargs):
    pass






Hook call order

The order in which hooks are applied is computed based on the following rules:


	
	Build the list of hooks to apply

	
	When testing if a transition can be applied, use all transition_check() hooks


	Before performing a transition, use all before_transition() and on_leave_state() hooks


	After performing a transition, use all after_transition() and on_enter_state() hooks










	Sort that list from higher to lower priority, and in alphabetical order if priority match




In the following code snippet, the order is hook3, hook1, hook4, hook2:

@xworkflows.before_transition()
def hook1(self):
    pass

@xworkflows.before_transition(priority=-1)
def hook2(self):
    pass

@xworkflows.before_transition(priority=10)
def hook3(self):
    pass

@xworkflows.on_leave_state()
def hook4(self):
    pass







Old-style hooks

Hooks can also be bound to the implementation at the transition() level:

@xworkflows.transition(check=some_fun, before=other_fun, after=something_else)
def accept(self):
    pass






Deprecated since version 0.4.0: Use before_transition(), after_transition() and transition_check()
instead; will be removed in 0.5.0.

The old behaviour did not allow for hook overriding in inherited workflows.






Checking transition availability

Some programs may need to display available transitions, without calling them.
Instead of checking manually the state of the object and calling
the appropriate transition_check() hooks if defined, you should simply call myobj.some_transition.is_available():

class MyObject(WorkflowEnabled):
    state = MyWorkflow
    x = 13

    @transition_check('accept')
    def check(self):
        return self.x == 42

    def accept(self):
        pass

    @transition()
    def cancel(self):
        pass





>>> obj = MyObject()
>>> obj.accept.is_available()  # Forbidden by 'check'
False
>>> obj.cancel.is_available()  # Forbidden by current state
False
>>> obj.x = 42
>>> obj.accept.is_available()
True







Logging transitions

The log_transition() method of a Workflow
allows logging each Transition performed by an object using that
Workflow.

This method is called with the following arguments:


	transition: the Transition just performed


	from_state: the State in which the object was just before the transition


	instance: the object to which the transition was applied


	*args: the arguments passed to the transition implementation


	**kwargs: the keyword arguments passed to the transition implementation




The default implementation logs (with the logging module) to the xworkflows.transitions logger.

This behaviour can be overridden on a per-workflow basis: simply override the Workflow.log_transition() method.



Advanced customization

In order to perform advanced tasks when running transitions, libraries may hook
directly at the ImplementationWrapper level.

For this, custom Workflow classes should override the
Workflow.implementation_class attribute with their custom subclass and add
extra behaviour there.

Possible customizations would be:


	Wrapping implementation call and state update in a database transaction


	Persisting the updated object after the transition


	Adding workflow-level hooks to run before/after the transition


	Performing the same sanity checks for all objects using that Workflow









          

      

      

    

  

    
      
          
            
  
Internals

This document presents the various classes and components of XWorkflows.


Note

All objects defined in the base module should be considered internal API
and subject to change without notice.

Public API consists of the public methods and attributes of the following objects:


	The transition() function;


	The before_transition(), after_transition(), transition_check(),
on_enter_state() and on_leave_state() decorators;


	The Workflow and WorkflowEnabled classes;


	The WorkflowError, AbortTransition, InvalidTransitionError and ForbiddenTransition exceptions.







Exceptions

The xworkflows module exposes a few specific exceptions:


	
exception xworkflows.WorkflowError[source]

	This is the base for all exceptions from the xworkflows module.






	
exception xworkflows.AbortTransition(WorkflowError)[source]

	This error is raised whenever a transition call fails, either due to state
validation or pre-transition checks.






	
exception xworkflows.InvalidTransitionError(AbortTransition)[source]

	This exception is raised when trying to perform a transition from an
incompatible state.






	
exception xworkflows.ForbiddenTransition(AbortTransition)[source]

	This exception will be raised when the check parameter of the
transition() decorator returns a non-True value.







States

States may be represented with different objects:


	base.State is a basic state (name and title)


	base.StateWrapper is an enhanced wrapper around the State with enhanced comparison functions.


	base.StateProperty is a class-level property-like wrapper around a State.





The State class


	
class base.State(name, title)

	This class describes a state in the most simple manner: with an internal name and a human-readable title.


	
name

	The name of the State;
used as an internal representation of the state, this should only contain ascii letters and numbers.






	
title

	The title of the State; used for display to users.











The StateWrapper class


	
class base.StateWrapper(state, workflow)

	Intended for use as a WorkflowEnabled attribute,
this wraps a State with knowledge about the related Workflow.

Its __hash__ is computed from the related name.
It compares equal to:


	Another StateWrapper for the same State


	Its State


	The name of its State





	
state

	The wrapped State






	
workflow

	The Workflow to which this State belongs.






	
transitions()

	
	Returns

	A list of Transition with this State as source















The StateProperty class


	
class base.StateProperty(workflow, state_field_name)

	Special property-like object (technically a data descriptor), this class controls
access to the current State of a WorkflowEnabled object.

It performs the following actions:


	Checks that any set value is a valid State from the workflow (raises ValueError otherwise)


	Wraps retrieved values into a StateWrapper





	
workflow

	The Workflow to which the attribute is related






	
field_name

	The name of the attribute wrapped by this StateProperty.












Workflows

A Workflow definition is slightly different from the resulting class.

A few class-level declarations will be converted into advanced objects:


	states is defined as a list of two-tuples and converted into a StateList


	transitions is defined as a list of three-tuples and converted into a TransitionList


	initial_state is defined as the name of the initial State of the Workflow and converted into that State





Workflow definition

A Workflow definition must inherit from the Workflow class, or use the base.WorkflowMeta metaclass for proper setup.


Defining states

The list of states should be defined as a list of two-tuples of (name, title):

class MyWorkflow(xworkflows.Workflow):
    states = (
        ('initial', "Initial"),
        ('middle', "Intermediary"),
        ('final', "Final - all is said and done."),
    )





This is converted into a StateList object.


	
class base.StateList

	This class acts as a mixed dictionary/object container of states.

It replaces the states list from the Workflow definition.


	
__len__()

	Returns the number of states in the Workflow






	
__getitem__()

	Allows retrieving a State from its name or from an instance,
in a dict-like manner






	
__getattr__()

	Allows retrieving a State from its name, as an attribute of the StateList:

MyWorkflow.states.initial == MyWorkflow.states['initial']










	
__iter__()

	Iterates over the states, in the order they were defined






	
__contains__()

	Tests whether a State instance or its name
belong to the Workflow











Defining transitions

At a Workflow level, transition are defined in a list of three-tuples:


	transition name


	list of the names of source states for the transition, or name of the source state if unique


	name of the target State




class MyWorkflow(xworkflows.Workflow):
    transitions = (
        ('advance', 'initial', 'middle'),
        ('end', ['initial', 'middle'], 'final'),
    )





This is converted into a TransitionList object.


	
class base.TransitionList

	This acts as a mixed dictionary/object container of transitions.

It replaces the transitions list from the Workflow definition.


	
__len__()

	Returns the number of transitions in the Workflow






	
__getitem__()

	Allows retrieving a Transition from its name or from an instance,
in a dict-like manner






	
__getattr__()

	Allows retrieving a Transition from its name, as an attribute of the TransitionList:

MyWorkflow.transitions.accept == MyWorkflow.transitions['accept']










	
__iter__()

	Iterates over the transitions, in the order they were defined






	
__contains__()

	Tests whether a Transition instance or its name
belong to the Workflow






	
available_from(state)

	Retrieve the list of Transition available from the given State.










	
class base.Transition

	Container for a transition.


	
name

	The name of the Transition; should be a valid Python identifier






	
source

	A list of source states for this Transition






	
target

	The target State for this Transition












Workflow attributes

A Workflow should inherit from the Workflow base class, or use the WorkflowMeta metaclass
(that builds the states, transitions, initial_state attributes).


	
class xworkflows.Workflow

	This class holds the definition of a workflow.


	
states

	A StateList of all State for this Workflow






	
transitions

	A TransitionList of all Transition for this Workflow






	
initial_state

	The initial State for this Workflow






	
log_transition(transition, from_state, instance, *args, **kwargs)

	
	Parameters

	
	transition – The Transition just performed


	from_state – The source State of the instance (before performing a transition)


	instance – The object undergoing a transition


	args – All non-keyword arguments passed to the transition implementation


	kwargs – All keyword arguments passed to the transition implementation








This method allows logging all transitions performed by objects using a given workflow.

The default implementation logs to the logging module, in the base logger.






	
implementation_class

	The class to use when creating ImplementationWrapper for a WorkflowEnabled using this Workflow.

Defaults to ImplementationWrapper.










	
class base.WorkflowMeta

	This metaclass will simply convert the states, transitions and initial_state
class attributes into the related StateList, TransitionList and State objects.

During this process, some sanity checks are performed:


	Each source/target State of a Transition must appear in
states


	The initial_state must appear in states.











Applying workflows

In order to use a Workflow, related objects should inherit from the WorkflowEnabled class.


	
class xworkflows.WorkflowEnabled

	This class will handle all specific setup related to using workflows:


	Converting attr = SomeWorkflow() into a StateProperty class attribute


	Wrapping all transition()-decorated functions into ImplementationProperty wrappers


	Adding noop implementations for other transitions





	
_add_workflow(mcs, field_name, state_field, attrs)

	Adds a workflow to the attributes dict of the future class.


	Parameters

	
	field_name (str) – Name of the field at which the field holding
the current state will live


	state_field (StateField) – The StateField
as returned by _find_workflows()


	attrs (dict) – Attribute dict of the future class, updated with the new
StateProperty.









Note

This method is also an extension point for custom XWorkflow-related
libraries.








	
_find_workflows(mcs, attrs)

	Find all workflow definitions in a class attributes dict.


	Parameters

	attrs (dict) – Attribute dict of the future class



	Returns

	A dict mapping a field name to a StateField describing
parameters for the workflow






Note

This method is also an extension point for custom XWorkflow-related
libraries.








	
_workflows

	This class-level attribute holds a dict mapping an attribute to the related Workflow.


Note

This is a private attribute, and may change at any time in the future.








	
_xworkflows_implems

	This class-level attribute holds a dict mapping an attribute to the related implementations.


Note

This is a private attribute, and may change at any time in the future.












	
class base.WorkflowEnabledMeta

	This metaclass handles the parsing of WorkflowEnabled and related magic.

Most of the work is handled by ImplementationList, with one instance
handling each Workflow attached to the WorkflowEnabled object.







Customizing transitions

A bare WorkflowEnabled subclass definition will be automatically modified to
include “noop” implementations for all transitions from related workflows.

In order to customize this behaviour, one should use the transition() decorator on
methods that should be called when performing transitions.


	
xworkflows.transition([trname='', field='', check=None, before=None, after=None])[source]

	Decorates a method and uses it for a given Transition.


	Parameters

	
	trname (str) – Name of the transition during which the decorated method should be called.
If empty, the name of the decorated method is used.


	field (str) – Name of the field this transition applies to; useful when two workflows define a transition with the same name.


	check (callable) – An optional function to call before running the transition, with
the about-to-be-modified instance as single argument.

Should return True if the transition can proceed.


Deprecated since version 0.4.0: Will be removed in 0.5.0; use transition_check() instead.






	before (callable) – An optional function to call after checks and before the actual
implementation.

Receives the same arguments as the transition implementation.


Deprecated since version 0.4.0: Will be removed in 0.5.0; use before_transition() instead.






	after (callable) – An optional function to call after the transition was performed and logged.

Receives the instance, the implementation return value and the implementation arguments.


Deprecated since version 0.4.0: Will be removed in 0.5.0; use after_transition() instead.

















	
class base.TransitionWrapper

	Actual class holding all values defined by the transition() decorator.


	
func

	The decorated function, wrapped with a few checks and calls.










Hooks

Hooks are declared through a _HookDeclaration decorator, which attaches
a specific xworkflows_hook attribute to the decorated method.
Methods with such attribute will be collected into Hook objects containing all useful fields.


Registering hooks


	
xworkflows._make_hook_dict(function)

	Ensures that the given function has a xworkflows_hook attributes, and returns it.

The xworkflows_hook is a dict mapping each hook kind to a list of (field, hook) pairs:

function.xworkflows_hook = {
    HOOK_BEFORE: [('state', <Hook: ...>), ('', <Hook: ...>)],
    HOOK_AFTER: [],
    ...
}






Note

Although the xworkflows_hook is considered a private API, it may
become an official extension point in future releases.








	
class base._HookDeclaration

	Base class for hook declaration decorators.

It accepts an (optional) list of transition/state names, and priority / field as keyword arguments:

@_HookDeclaration('foo', 'bar')
@_HookDeclaration(priority=42)
@_HookDeclaration('foo', field='state1')
@_HookDeclaration(priority=42, field='state1')
def hook(self):
    pass






	
names

	List of transition or state names
the hook applies to


	Type

	str list










	
priority

	The priority of the hook


	Type

	int










	
field

	The name of the StateWrapper field whose transitions the hook applies to


	Type

	str










	
_as_hook(self, func)

	Create a Hook for the given callable






	
__call__(self, func)

	Create a Hook for the function, and store it in the function’s xworkflows_hook attribute.










	
xworkflows.before_transition(*names, priority=0, field='')[source]

	Marks a method as a pre-transition hook.
The hook will be called just before changing a WorkflowEnabled object state,
with the same *args and **kwargs as the actual implementation.






	
xworkflows.transition_check(*names, priority=0, field='')[source]

	Marks a method as a transition check hook.

The hook will be called when using is_available()
and before running the implementation, without any args, and should return a boolean
indicating whether the transition may proceed.






	
xworkflows.after_transition(*names, priority=0, field='')[source]

	Marks a method as a post-transition hook

The hook will be called immediately after the state update, with:


	res, return value of the actual implementation


	*args and **kwargs that were passed to the implementation









	
xworkflows.on_leave_state(*names, priority=0, field='')[source]

	Marks a method as a pre-transition hook to call when the object leaves one of
the given states.

The hook will be called with the same arguments as a before_transition() hook.






	
xworkflows.on_enter_state(*names, priority=0, field='')[source]

	Marks a method as a post-transition hook to call just after changing the
state to one of the given states.

The hook will be called with the same arguments as a after_transition() hook.







Calling hooks


	
xworkflows.HOOK_BEFORE

	The kind of before_transition() hooks






	
xworkflows.HOOK_CHECK

	The kind of transition_check() hooks






	
xworkflows.HOOK_AFTER

	The kind of after_transition() hooks






	
xworkflows.HOOK_ON_ENTER

	The kind of on_leave_state() hooks






	
xworkflows.HOOK_ON_LEAVE

	The kind of on_enter_state() hooks






	
class base.Hook

	Describes a hook, including its kind, priority and the list of
transitions it applies to.


	
kind

	One of HOOK_BEFORE, HOOK_AFTER, HOOK_CHECK, HOOK_ON_ENTER or HOOK_ON_LEAVE; the kind of hook.






	
priority

	The priority of the hook, as an integer defaulting to 0.
Hooks with higher priority will be executed first; hooks with the same priority
will be sorted according to the function name.


	Type

	int










	
function

	The actual hook function to call. Arguments passed to that function depend on
the hook’s kind.


	Type

	callable










	
names

	Name of states or transitions this
hook applies to; will be ('*',) if the hook applies to all states/transitions.


	Type

	str tuple










	
applies_to(self, transition[, from_state=None])

	Check whether the hook applies to the given Transition and optional
source State.

If from_state is None, the test means “could the hook apply to the given
transition, in at least one source state”.

If from_state is not None, the test means “does the hook apply to the
given transition for this specific source state”.


	Returns

	bool










	
__call__(self, *args, **kwargs):

	Call the hook






	
__eq__(self, other)

	




	
__ne__(self, other)

	Two hooks are “equal” if they wrap the same function, have the same kind, priority and names.






	
__cmp__(self, other)

	Hooks are ordered by descending priority and ascending decorated function name.












Advanced customization

Once WorkflowEnabledMeta has updated the WorkflowEnabled subclass,
all transitions – initially defined and automatically added – are replaced with a base.ImplementationProperty instance.


	
class base.ImplementationProperty

	This class holds all objects required to instantiate a ImplementationWrapper
whenever the attribute is accessed on an instance.

Internally, it acts as a ‘non-data descriptor’, close to property().


	
__get__(self, instance, owner)

	This method overrides the getattr() behavior:


	When called without an instance (instance=None), returns itself


	When called with an instance, this will instantiate a ImplementationWrapper
attached to that instance and return it.









	
add_hook(self, hook)

	Register a new Hook.










	
class base.ImplementationWrapper

	This class handles applying a Transition to a WorkflowEnabled object.


	
instance

	The WorkflowEnabled object to modify when calling this wrapper.






	
field_name

	The name of the field modified by this ImplementationProperty (a string)


	Type

	str










	
transition

	The Transition performed by this object.


	Type

	Transition










	
workflow

	The Workflow to which this ImplementationProperty relates.


	Type

	Workflow










	
implementation

	The actual method to call when performing the transition. For undefined implementations, uses noop().


	Type

	callable










	
hooks

	All hooks that may be applied when performing the related transition.


	Type

	dict mapping a hook kind to a list of Hook










	
current_state

	Actually a property, retrieve the current state from the instance.


	Type

	StateWrapper










	
__call__()

	This method allows the TransitionWrapper to act as a function,
performing the whole range of checks and hooks before and after calling the
actual implementation.






	
is_available()

	Determines whether the wrapped transition implementation can be called.
In details:


	it makes sure that the current state of the instance is compatible with
the transition;


	it calls the transition_check() hooks, if defined.





	Return type

	bool














	
base.noop(instance)

	The ‘do-nothing’ function called as default implementation of transitions.







Collecting the ImplementationProperty


Warning

This documents private APIs. Use at your own risk.



Building the list of ImplementationProperty for a given WorkflowEnabled, and generating the missing ones, is a complex job.


	
class base.ImplementationList

	This class performs a few low-level operations on a WorkflowEnabled class:


	Collecting TransitionWrapper attributes


	Converting them into ImplementationProperty


	Adding noop() implementations for remaining Transition


	Updating the class attributes with those ImplementationProperty





	
state_field

	The name of the attribute (from attr = SomeWorkflow() definition) currently handled.


	Type

	str










	
workflow

	The Workflow this ImplementationList refers to






	
implementations

	Dict mapping a transition name to the related ImplementationProperty


	Type

	dict (str => ImplementationProperty)










	
transitions_at

	Dict mapping the name of a transition to the attribute holding its ImplementationProperty:

@transition('foo')
def bar(self):
    pass





will translate into:

self.implementations == {'foo': <ImplementationProperty for 'foo' on 'state': <function bar at 0xdeadbeed>>}
self.transitions_at == {'foo': 'bar'}










	
custom_implems

	Set of name of implementations which were remapped within the workflow.






	
load_parent_implems(self, parent_implems)

	Loads implementations defined in a parent ImplementationList.


	Parameters

	parent_implems (ImplementationList) – The ImplementationList from a parent










	
get_custom_implementations(self)

	Retrieves definition of custom (non-automatic) implementations from the current list.


	Yields

	(trname, attr, implem): Tuples containing the transition name,
the name of the attribute its implementation is stored at, and that
implementation (a ImplementationProperty).










	
should_collect(self, value)

	Whether a given attribute value should be collected in the current list.

Checks that it is a TransitionWrapper, for a Transition
of the current Workflow, and relates to the current state_field.






	
collect(self, attrs)

	Collects all TransitionWrapper from an attribute dict if they
verify should_collect().


	Raises

	ValueError
If two TransitionWrapper for a same Transition are defined in the attributes.










	
add_missing_implementations(self)

	Registers noop() ImplementationProperty for all
Transition that weren’t collected in the collect() step.






	
register_hooks(self, cls)

	Walks the class attributes and collects hooks from those with a
xworkflows_hook attribute (through register_function_hooks())






	
register_function_hooks(self, func)

	Retrieves hook definitions from the given function, and registers them
on the related ImplementationProperty.






	
_may_override(self, implem, other)

	Checks whether the implem ImplementationProperty is a
valid override for the other ImplementationProperty.

Rules are:


	A ImplementationProperty may not override another ImplementationProperty for another Transition or another state_field


	A ImplementationProperty may not override a TransitionWrapper unless it was generated from that TransitionWrapper


	A ImplementationProperty may not override other types of previous definitions.









	
fill_attrs(self, attrs)

	Adds all ImplementationProperty from implementations to the
given attributes dict, unless _may_override() prevents the operation.






	
transform(self, attrs)

	
	Parameters

	attrs (dict) – Mapping holding attribute declarations from a class definition





Performs the following actions, in order:


	collect(): Create ImplementationProperty from the
transition wrappers in the attrs dict


	add_missing_implementations():
create ImplementationProperty for the remaining transitions


	fill_attrs(): Update the attrs dict with the
implementations defined in the
previous steps.

















          

      

      

    

  

    
      
          
            
  
ChangeLog


1.1.1 (unreleased)


	Nothing changed yet.






1.1.0 (2021-04-29)

New:



	Add support for Python 3.7, 3.8, 3.9









1.0.4 (2014-08-11)

Bugfix:



	Fix setup.py execution on Python3 or non-UTF locale.









1.0.3 (2014-01-29)

Bugfix:



	Allow setting the current state of a WorkflowEnabled
instance from a state’s name


	Ensure states behaves as a proper mapping









1.0.2 (2013-09-24)

Bugfix:



	Fix installation from PyPI









1.0.1 (2013-09-24)

Misc:



	Switch back to setuptools >= 0.8 for packaging.









1.0.0 (2013-04-29)

Bugfix:



	Fix hook registration on custom implementations while inheriting
WorkflowEnabled.







New:



	Add support for Python 2.6 to 3.2







Backward incompatible:



	The string representation of State and StateWrapper
now reflects the state’s name, as does their unicode() representation in Python 2.X.









0.4.1 (2012-08-03)

Bugfix:



	Support passing a Transition or a State to hooks,
instead of its name.









0.4.0 (2012-08-02)

New:



	Improve support for transition hooks, with the xworkflows.before_transition(),
xworkflows.after_transition(), xworkflows.transition_check(), xworkflows.on_enter_state() and
xworkflows.on_leave_state() decorators.







Bugfix:



	Fix support for inheritance of xworkflows.WorkflowEnabled objects.







Deprecated:



	Use of the check=, before=, after= keyword arguments in the
@transition decorator is now deprecated; use @before_transition,
@after_transition and @transition_check instead. Support for old
keyword arguments will be removed in 0.5.0.







Backward incompatible:



	The (private) ImplementationWrapper class no longer accepts the
check, before, after arguments (use hooks instead)









0.3.2 (2012-06-05)

Bugfix:



	Fix transition logging for objects whose __repr__ doesn’t convert to unicode.









0.3.1 (2012-05-29)

Bugfix:



	Make the title argument mandatory in State
initialization









0.3.0 (2012-04-30)

New:



	Allow and document customization of the ImplementationWrapper


	Add a method to check whether a transition is available from the current instance


	Cleanup ImplementationList and improve its documentation









0.2.4 (23 04 2012)

New:



	Improve documentation


	Add pre-transition check hook


	Remove alternate Workflow definition schemes.


	Properly validate objects using two workflows with conflicting transitions.









0.2.3 (15 04 2012)

New:



	Simplify API


	Add support for pe/post transition and logging hooks









0.2.1 (26 03 2012)

New:



	Add support for workflow subclassing


	Improve packaging









0.1.0 (08 09 2011)

New:



	First Public Release.











          

      

      

    

  

    
      
          
            

   Python Module Index


   
   x
   


   
     		 	

     		
       x	

     
       	
       	
       xworkflows	
       XWorkflows API

   



          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | F
 | G
 | H
 | I
 | K
 | L
 | N
 | O
 | P
 | R
 | S
 | T
 | W
 | X
 


_


  	
      	__call__() (xworkflows.base._HookDeclaration method)

      
        	(xworkflows.base.ImplementationWrapper method)


      


      	__cmp__() (xworkflows.base.Hook method)


      	__contains__() (xworkflows.base.StateList method)

      
        	(xworkflows.base.TransitionList method)


      


      	__eq__() (xworkflows.base.Hook method)


      	__get__() (xworkflows.base.ImplementationProperty method)


      	__getattr__() (xworkflows.base.StateList method)

      
        	(xworkflows.base.TransitionList method)


      


      	__getitem__() (xworkflows.base.StateList method)

      
        	(xworkflows.base.TransitionList method)


      


  

  	
      	__iter__() (xworkflows.base.StateList method)

      
        	(xworkflows.base.TransitionList method)


      


      	__len__() (xworkflows.base.StateList method)

      
        	(xworkflows.base.TransitionList method)


      


      	__ne__() (xworkflows.base.Hook method)


      	_add_workflow() (xworkflows.WorkflowEnabled method)


      	_as_hook() (xworkflows.base._HookDeclaration method)


      	_find_workflows() (xworkflows.WorkflowEnabled method)


      	_make_hook_dict() (in module xworkflows)


      	_may_override() (xworkflows.base.ImplementationList method)


      	_workflows (xworkflows.WorkflowEnabled attribute)


      	_xworkflows_implems (xworkflows.WorkflowEnabled attribute)


  





A


  	
      	AbortTransition


      	add_hook() (xworkflows.base.ImplementationProperty method)


      	add_missing_implementations() (xworkflows.base.ImplementationList method)


  

  	
      	after_transition() (in module xworkflows)


      	applies_to() (xworkflows.base.Hook method)


      	available_from() (xworkflows.base.TransitionList method)


  





B


  	
      	base._HookDeclaration (class in xworkflows)


      	base.Hook (class in xworkflows)


      	base.ImplementationList (class in xworkflows)


      	base.ImplementationProperty (class in xworkflows)


      	base.ImplementationWrapper (class in xworkflows)


      	base.noop() (in module xworkflows)


      	base.State (class in xworkflows)


      	base.StateList (class in xworkflows)


  

  	
      	base.StateProperty (class in xworkflows)


      	base.StateWrapper (class in xworkflows)


      	base.Transition (class in xworkflows)


      	base.TransitionList (class in xworkflows)


      	base.TransitionWrapper (class in xworkflows)


      	base.WorkflowEnabledMeta (class in xworkflows)


      	base.WorkflowMeta (class in xworkflows)


      	before_transition() (in module xworkflows)


  





C


  	
      	collect() (xworkflows.base.ImplementationList method)


  

  	
      	current_state (xworkflows.base.ImplementationWrapper attribute)


      	custom_implems (xworkflows.base.ImplementationList attribute)


  





F


  	
      	field (xworkflows.base._HookDeclaration attribute)


      	field_name (xworkflows.base.ImplementationWrapper attribute)

      
        	(xworkflows.base.StateProperty attribute)


      


  

  	
      	fill_attrs() (xworkflows.base.ImplementationList method)


      	ForbiddenTransition


      	func (xworkflows.base.TransitionWrapper attribute)


      	function (xworkflows.base.Hook attribute)


  





G


  	
      	get_custom_implementations() (xworkflows.base.ImplementationList method)


  





H


  	
      	HOOK_AFTER (in module xworkflows)


      	HOOK_BEFORE (in module xworkflows)


      	HOOK_CHECK (in module xworkflows)


  

  	
      	HOOK_ON_ENTER (in module xworkflows)


      	HOOK_ON_LEAVE (in module xworkflows)


      	hooks (xworkflows.base.ImplementationWrapper attribute)


  





I


  	
      	implementation (xworkflows.base.ImplementationWrapper attribute)


      	implementation_class (xworkflows.Workflow attribute)


      	implementations (xworkflows.base.ImplementationList attribute)


  

  	
      	initial_state (xworkflows.Workflow attribute)


      	instance (xworkflows.base.ImplementationWrapper attribute)


      	InvalidTransitionError


      	is_available() (xworkflows.base.ImplementationWrapper method)


  





K


  	
      	kind (xworkflows.base.Hook attribute)


  





L


  	
      	load_parent_implems() (xworkflows.base.ImplementationList method)


  

  	
      	log_transition() (xworkflows.Workflow method)


  





N


  	
      	name (xworkflows.base.State attribute)

      
        	(xworkflows.base.Transition attribute)


      


  

  	
      	names (xworkflows.base._HookDeclaration attribute)

      
        	(xworkflows.base.Hook attribute)


      


  





O


  	
      	on_enter_state() (in module xworkflows)


  

  	
      	on_leave_state() (in module xworkflows)


  





P


  	
      	priority (xworkflows.base._HookDeclaration attribute)

      
        	(xworkflows.base.Hook attribute)


      


  





R


  	
      	register_function_hooks() (xworkflows.base.ImplementationList method)


  

  	
      	register_hooks() (xworkflows.base.ImplementationList method)


  





S


  	
      	should_collect() (xworkflows.base.ImplementationList method)


      	source (xworkflows.base.Transition attribute)


  

  	
      	state (xworkflows.base.StateWrapper attribute)


      	state_field (xworkflows.base.ImplementationList attribute)


      	states (xworkflows.Workflow attribute)


  





T


  	
      	target (xworkflows.base.Transition attribute)


      	title (xworkflows.base.State attribute)


      	transform() (xworkflows.base.ImplementationList method)


      	transition (xworkflows.base.ImplementationWrapper attribute)


  

  	
      	transition() (in module xworkflows)


      	transition_check() (in module xworkflows)


      	transitions (xworkflows.Workflow attribute)


      	transitions() (xworkflows.base.StateWrapper method)


      	transitions_at (xworkflows.base.ImplementationList attribute)


  





W


  	
      	Workflow (class in xworkflows)


      	workflow (xworkflows.base.ImplementationList attribute)

      
        	(xworkflows.base.ImplementationWrapper attribute)


        	(xworkflows.base.StateProperty attribute)


        	(xworkflows.base.StateWrapper attribute)


      


  

  	
      	WorkflowEnabled (class in xworkflows)


      	WorkflowError


  





X


  	
      	xworkflows (module)


  







          

      

      

    

  

    
      
          
            
  All modules for which code is available

	xworkflows.base




          

      

      

    

  

    
      
          
            
  Source code for xworkflows.base

# -*- coding: utf-8 -*-
# Copyright (c) 2011-2013 Raphaël Barrois
# This code is distributed under the two-clause BSD License.


"""Base components of XWorkflows."""

import logging
import re
import warnings

from .compat import is_python3, is_string, u
from . import utils


[docs]class WorkflowError(Exception):
    """Base class for errors from the xworkflows module."""



[docs]class AbortTransition(WorkflowError):
    """Raised to prevent a transition from proceeding."""



[docs]class InvalidTransitionError(AbortTransition):
    """Raised when trying to perform a transition not available from current state."""



[docs]class ForbiddenTransition(AbortTransition):
    """Raised when the 'check' hook of a transition was defined and returned False."""



class State(object):
    """A state within a workflow.

    Attributes:
        name (str): the name of the state
        title (str): the human-readable title for the state
    """
    STATE_NAME_RE = re.compile(r'\w+$')

    def __init__(self, name, title):
        if not self.STATE_NAME_RE.match(name):
            raise ValueError('Invalid state name %s.' % name)
        self.name = name
        self.title = title

    def __str__(self):
        return self.name

    def __repr__(self):
        return '<%s: %r>' % (self.__class__.__name__, self.name)


class StateList(object):
    """A list of states."""
    def __init__(self, states):
        self._states = dict((st.name, st) for st in states)
        self._order = tuple(st.name for st in states)

    def __getattr__(self, name):
        try:
            return self._states[name]
        except KeyError:
            raise AttributeError('StateList %s has no state named %s' % (self, name))

    def __len__(self):
        return len(self._states)

    def __getitem__(self, name_or_state):
        if isinstance(name_or_state, State):
            return self._states[name_or_state.name]
        else:
            return self._states[name_or_state]

    def __repr__(self):
        return '%s(%r)' % (self.__class__.__name__, self._states)

    def __iter__(self):
        for name in self._order:
            yield self._states[name]

    def __contains__(self, state):
        if isinstance(state, State):
            return state.name in self._states and self._states[state.name] == state
        else:  # Expect a state name
            return state in self._states


class Transition(object):
    """A transition.

    Attributes:
        name (str): the name of the Transition
        source (State list): the 'source' states of the transition
        target (State): the 'target' state of the transition
    """
    def __init__(self, name, source, target):
        self.name = name
        if isinstance(source, State):
            source = [source]
        self.source = source
        self.target = target

    def __repr__(self):
        return '%s(%r, %r, %r)' % (self.__class__.__name__,
                                   self.name, self.source, self.target)


class TransitionList(object):
    """Holder for the transitions of a given workflow."""

    def __init__(self, transitions):
        """Create a TransitionList.

        Args:
            transitions (list of (name, source, target) tuple): the transitions
                to include.
        """
        self._transitions = {}
        self._order = []
        for trdef in transitions:
            self._transitions[trdef.name] = trdef
            self._order.append(trdef.name)

    def __len__(self):
        return len(self._transitions)

    def __getattr__(self, name):
        try:
            return self._transitions[name]
        except KeyError:
            raise AttributeError(
                "TransitionList %s has no transition named %s." % (self, name))

    def __getitem__(self, name):
        return self._transitions[name]

    def __iter__(self):
        for name in self._order:
            yield self._transitions[name]

    def __contains__(self, value):
        if isinstance(value, Transition):
            return value.name in self._transitions and self._transitions[value.name] == value
        else:
            return value in self._transitions

    def available_from(self, state):
        """Retrieve all transitions available from a given state.

        Args:
            state (State): the initial state.

        Yields:
            Transition: all transitions starting from that state
        """
        for transition in self:
            if state in transition.source:
                yield transition

    def __repr__(self):
        return '%s(%r)' % (self.__class__.__name__, self._transitions.values())


def _setup_states(state_definitions, prev=()):
    """Create a StateList object from a 'states' Workflow attribute."""
    states = list(prev)
    for state_def in state_definitions:
        if len(state_def) != 2:
            raise TypeError(
                "The 'state' attribute of a workflow should be "
                "a two-tuple of strings; got %r instead." % (state_def,)
            )
        name, title = state_def
        state = State(name, title)
        if any(st.name == name for st in states):
            # Replacing an existing state
            states = [state if st.name == name else st for st in states]
        else:
            states.append(state)
    return StateList(states)


def _setup_transitions(tdef, states, prev=()):
    """Create a TransitionList object from a 'transitions' Workflow attribute.

    Args:
        tdef: list of transition definitions
        states (StateList): already parsed state definitions.
        prev (TransitionList): transition definitions from a parent.

    Returns:
        TransitionList: the list of transitions defined in the 'tdef' argument.
    """
    trs = list(prev)
    for transition in tdef:
        if len(transition) == 3:
            (name, source, target) = transition
            if is_string(source) or isinstance(source, State):
                source = [source]
            source = [states[src] for src in source]
            target = states[target]
            tr = Transition(name, source, target)
        else:
            raise TypeError(
                "Elements of the 'transition' attribute of a "
                "workflow should be three-tuples; got %r instead." % (transition,)
            )

        if any(prev_tr.name == tr.name for prev_tr in trs):
            # Replacing an existing state
            trs = [tr if prev_tr.name == tr.name else prev_tr for prev_tr in trs]
        else:
            trs.append(tr)
    return TransitionList(trs)


HOOK_BEFORE = 'before'
HOOK_AFTER = 'after'
HOOK_CHECK = 'check'
HOOK_ON_ENTER = 'on_enter'
HOOK_ON_LEAVE = 'on_leave'


class Hook(object):
    """A hook to run when a transition occurs.

    Attributes:
        kind (str): the kind of hook
        priority (int): the priority of the hook (higher values run first)
        function (callable): the actual function to call
        names (str list): name of the transitions or states to which the hook
            relates. The special value '*' means 'applies to all transitions/
            states'.

    Hooks are sortable by descending priority and ascending function name.

    Hook kinds are as follow:
        - HOOK_BEFORE: run before the related transitions
        - HOOK_AFTER: run after the related transitions
        - HOOK_CHECK: run as part of pre-transition checks (return value matters)
        - HOOK_ON_ENTER: run just after a transition entering a related state
        - HOOK_ON_LEAVE: run just before a transition leaving from a related state
    """

    def __init__(self, kind, function, *names, **kwargs):
        assert kind in (
            HOOK_BEFORE, HOOK_AFTER, HOOK_CHECK,
            HOOK_ON_ENTER, HOOK_ON_LEAVE)

        self.kind = kind
        self.priority = kwargs.get('priority', 0)
        self.function = function
        self.names = names or ('*',)

    def _match_state(self, state):
        """Checks whether a given State matches self.names."""
        return (self.names == '*'
                or state in self.names
                or state.name in self.names)

    def _match_transition(self, transition):
        """Checks whether a given Transition matches self.names."""
        return (self.names == '*'
                or transition in self.names
                or transition.name in self.names)

    def applies_to(self, transition, from_state=None):
        """Whether this hook applies to the given transition/state.

        Args:
            transition (Transition): the transition to check
            from_state (State or None): the state to check. If absent, the check
                is 'might this hook apply to the related transition, given a
                valid source state'.
        """
        if '*' in self.names:
            return True
        elif self.kind in (HOOK_BEFORE, HOOK_AFTER, HOOK_CHECK):
            return self._match_transition(transition)
        elif self.kind == HOOK_ON_ENTER:
            return self._match_state(transition.target)
        elif from_state is None:
            # Testing whether the hook may apply to at least one source of the
            # transition
            return any(self._match_state(src) for src in transition.source)
        else:
            return self._match_state(from_state)

    def __call__(self, *args, **kwargs):
        return self.function(*args, **kwargs)

    def __eq__(self, other):
        """Equality is based on priority, function and kind."""
        if not isinstance(other, Hook):
            return NotImplemented
        return (
            self.priority == other.priority
            and self.function == other.function
            and self.kind == other.kind
            and self.names == other.names
        )

    def __ne__(self, other):
        if not isinstance(other, Hook):
            return NotImplemented
        return not (self == other)

    def __lt__(self, other):
        """Compare hooks of the same kind."""
        if not isinstance(other, Hook):
            return NotImplemented
        return (
            (other.priority, self.function.__name__)
            < (self.priority, other.function.__name__))

    def __gt__(self, other):
        """Compare hooks of the same kind."""
        if not isinstance(other, Hook):
            return NotImplemented
        return (
            (other.priority, self.function.__name__)
            > (self.priority, other.function.__name__))

    def __repr__(self):
        return '<%s: %s %r>' % (
            self.__class__.__name__, self.kind, self.function)


class ImplementationWrapper(object):
    """Wraps a transition implementation.

    Emulates a function behaviour, but provides a few extra features.

    Attributes:
        instance (WorkflowEnabled): the instance to update
.
        field_name (str): the name of the field of the instance to update.
        transition (Transition): the transition to perform
        workflow (Workflow): the workflow to which this is related.

        hooks (Hook list): optional hooks to call during the transition
        implementation (callable): the code to invoke between 'before' and the
            state update.
    """

    def __init__(self, instance, field_name, transition, workflow,
                 implementation, hooks=None):
        self.instance = instance
        self.field_name = field_name
        self.transition = transition
        self.workflow = workflow

        self.hooks = hooks or {}
        self.implementation = implementation

        self.__doc__ = implementation.__doc__

    @property
    def current_state(self):
        return getattr(self.instance, self.field_name)

    def _pre_transition_checks(self):
        """Run the pre-transition checks."""
        current_state = getattr(self.instance, self.field_name)
        if current_state not in self.transition.source:
            raise InvalidTransitionError(
                "Transition '%s' isn't available from state '%s'." %
                (self.transition.name, current_state.name))

        for check in self._filter_hooks(HOOK_CHECK):
            if not check(self.instance):
                raise ForbiddenTransition(
                    "Transition '%s' was forbidden by "
                    "custom pre-transition check." % self.transition.name)

    def _filter_hooks(self, *hook_kinds):
        """Filter a list of hooks, keeping only applicable ones."""
        hooks = sum((self.hooks.get(kind, []) for kind in hook_kinds), [])
        return sorted(hook for hook in hooks
                      if hook.applies_to(self.transition, self.current_state))

    def _pre_transition(self, *args, **kwargs):
        for hook in self._filter_hooks(HOOK_BEFORE, HOOK_ON_LEAVE):
            hook(self.instance, *args, **kwargs)

    def _during_transition(self, *args, **kwargs):
        return self.implementation(self.instance, *args, **kwargs)

    def _log_transition(self, from_state, *args, **kwargs):
        self.workflow.log_transition(
            self.transition, from_state, self.instance,
            *args, **kwargs)

    def _post_transition(self, result, *args, **kwargs):
        """Performs post-transition actions."""
        for hook in self._filter_hooks(HOOK_AFTER, HOOK_ON_ENTER):
            hook(self.instance, result, *args, **kwargs)

    def __call__(self, *args, **kwargs):
        """Run the transition, with all checks."""

        self._pre_transition_checks()
        # Call hooks.
        self._pre_transition(*args, **kwargs)

        result = self._during_transition(*args, **kwargs)

        from_state = getattr(self.instance, self.field_name)
        setattr(self.instance, self.field_name, self.transition.target)

        # Call hooks.
        self._log_transition(from_state, *args, **kwargs)
        self._post_transition(result, *args, **kwargs)
        return result

    def is_available(self):
        """Check whether this transition is available on the current object.

        Returns:
            bool
        """
        try:
            self._pre_transition_checks()
        except (InvalidTransitionError, ForbiddenTransition):
            return False
        return True

    def __repr__(self):
        return "<%s for %r on %r: %r>" % (
            self.__class__.__name__,
            self.transition.name, self.field_name, self.implementation)


class ImplementationProperty(object):
    """Holds an implementation of a transition.

    This class is a 'non-data descriptor', somewhat similar to a property.

    Attributes:
        field_name (str): the name of the field of the instance to update.
        transition (Transition): the transition to perform
        workflow (Workflow): the workflow to which this is related.

        hooks (Hook list): hooks to apply along with the transition.
        implementation (callable): the code to invoke between 'before' and the
            state update.
    """
    def __init__(self, field_name, transition, workflow, implementation, hooks=None):
        self.field_name = field_name
        self.transition = transition
        self.workflow = workflow
        self.hooks = hooks or {}
        self.implementation = implementation
        self.__doc__ = implementation.__doc__

    def copy(self):
        return self.__class__(
            field_name=self.field_name,
            transition=self.transition,
            workflow=self.workflow,
            implementation=self.implementation,
            # Don't copy hooks: they'll be re-generated during metaclass __new__
            hooks={},
        )

    def add_hook(self, hook):
        self.hooks.setdefault(hook.kind, []).append(hook)

    def __get__(self, instance, owner):
        if instance is None:
            return self

        if not isinstance(instance, BaseWorkflowEnabled):
            raise TypeError(
                "Unable to apply transition '%s' to object %r, which is not "
                "attached to a Workflow." % (self.transition.name, instance))

        return self.workflow.implementation_class(
            instance,
            self.field_name, self.transition, self.workflow,
            self.implementation, self.hooks)

    def __repr__(self):
        return "<%s for '%s' on '%s': %s>" % (
            self.__class__.__name__,
            self.transition.name, self.field_name, self.implementation)


class TransitionWrapper(object):
    """Mark that a method should be used for a transition with a different name.

    Attributes:
        trname (str): the name of the transition that the method implements
        func (function): the decorated method
    """

    def __init__(self, trname, field='', check=None, before=None, after=None):
        self.trname = trname
        self.field = field
        self.check = check
        self.before = before
        self.after = after
        self.func = None

    def __call__(self, func):
        self.func = func
        if self.trname == '':
            self.trname = func.__name__
        return self

    def __repr__(self):
        return "<%s for %r: %s>" % (self.__class__.__name__, self.trname, self.func)


[docs]def transition(trname='', field='', check=None, before=None, after=None):
    """Decorator to declare a function as a transition implementation."""
    if callable(trname):
        raise ValueError(
            "The @transition decorator should be called as "
            "@transition(['transition_name'], **kwargs)")
    if check or before or after:
        warnings.warn(
            "The use of check=, before= and after= in @transition decorators is "
            "deprecated in favor of @transition_check, @before_transition and "
            "@after_transition decorators.",
            DeprecationWarning,
            stacklevel=2)
    return TransitionWrapper(trname, field=field, check=check, before=before, after=after)



def _make_hook_dict(fun):
    """Ensure the given function has a xworkflows_hook attribute.

    That attribute has the following structure:
    >>> {
    ...     'before': [('state', <TransitionHook>), ...],
    ... }
    """
    if not hasattr(fun, 'xworkflows_hook'):
        fun.xworkflows_hook = {
            HOOK_BEFORE: [],
            HOOK_AFTER: [],
            HOOK_CHECK: [],
            HOOK_ON_ENTER: [],
            HOOK_ON_LEAVE: [],
        }
    return fun.xworkflows_hook


class _HookDeclaration(object):
    """Base class for decorators declaring methods as transition hooks.

    Args:
        *names (str tuple): name of the states/transitions to bind to; use '*'
            for 'all'
        priority (int): priority of the hook, defaults to 0
        field (str): name of the field to which the hooked transition relates

    Usage:
        >>> @_HookDeclaration('foo', 'bar', priority=4)
        ... def my_hook(self):
        ...   pass
    """

    def __init__(self, *names, **kwargs):
        if not names:
            names = ('*',)
        self.names = names
        self.priority = kwargs.get('priority', 0)
        self.field = kwargs.get('field', '')

    def _as_hook(self, func):
        return Hook(self.hook_name, func, *self.names, priority=self.priority)

    def __call__(self, func):
        hook_dict = _make_hook_dict(func)
        hooks = hook_dict[self.hook_name]
        hooks.append((self.field, self._as_hook(func)))
        return func


[docs]class before_transition(_HookDeclaration):
    """Decorates a method that should be called before a given transition.

    Example:
        >>> @before_transition('foobar')
        ... def blah(self):
        ...   pass
    """
    hook_name = HOOK_BEFORE



[docs]class after_transition(_HookDeclaration):
    """Decorates a method that should be called after a given transition.

    Example:
        >>> @after_transition('foobar')
        ... def blah(self):
        ...   pass
    """
    hook_name = HOOK_AFTER



[docs]class transition_check(_HookDeclaration):
    """Decorates a method that should be called after a given transition.

    Example:
        >>> @transition_check('foobar')
        ... def blah(self):
        ...   pass
    """
    hook_name = HOOK_CHECK



[docs]class on_enter_state(_HookDeclaration):
    """Decorates a method that should be used as a hook for a state.

    Example:
        >>> @on_enter_state('foo', 'bar')
        ... def blah(self):
        ...   pass
    """
    hook_name = HOOK_ON_ENTER



[docs]class on_leave_state(_HookDeclaration):
    """Decorates a method that should be used as a hook for a state.

    Example:
        >>> @on_leave_state('foo', 'bar')
        ... def blah(self):
        ...   pass
    """
    hook_name = HOOK_ON_LEAVE



def noop(instance, *args, **kwargs):
    """NoOp function, ignores all arguments."""
    pass


class ImplementationList(object):
    """Stores all implementations.

    Attributes:
        state_field (str): the name of the field holding the state of objects.
        implementations (dict(str => ImplementationProperty)): maps a transition
            name to the associated implementation.
        workflow (Workflow): the related workflow
        transitions_at (dict(str => str)): maps a transition name to the
            name of the attribute holding the related implementation.
        custom_implems (str set): list of transition names for which a custom
            implementation has been defined.
    """

    def __init__(self, state_field, workflow):
        self.state_field = state_field
        self.workflow = workflow
        self.implementations = {}
        self.transitions_at = {}
        self.custom_implems = set()

    def load_parent_implems(self, parent_implems):
        """Import previously defined implementations.

        Args:
            parent_implems (ImplementationList): List of implementations defined
                in a parent class.
        """
        for trname, attr, implem in parent_implems.get_custom_implementations():
            self.implementations[trname] = implem.copy()
            self.transitions_at[trname] = attr
            self.custom_implems.add(trname)

    def add_implem(self, transition, attribute, function, **kwargs):
        """Add an implementation.

        Args:
            transition (Transition): the transition for which the implementation
                is added
            attribute (str): the name of the attribute where the implementation
                will be available
            function (callable): the actual implementation function
            **kwargs: extra arguments for the related ImplementationProperty.
        """
        implem = ImplementationProperty(
            field_name=self.state_field,
            transition=transition,
            workflow=self.workflow,
            implementation=function,
            **kwargs)
        self.implementations[transition.name] = implem
        self.transitions_at[transition.name] = attribute
        return implem

    def should_collect(self, value):
        """Decide whether a given value should be collected."""
        return (
            # decorated with @transition
            isinstance(value, TransitionWrapper)
            # Relates to a compatible transition
            and value.trname in self.workflow.transitions
            # Either not bound to a state field or bound to the current one
            and (not value.field or value.field == self.state_field))

    def collect(self, attrs):
        """Collect the implementations from a given attributes dict."""

        for name, value in attrs.items():
            if self.should_collect(value):
                transition = self.workflow.transitions[value.trname]

                if (
                        value.trname in self.implementations
                        and value.trname in self.custom_implems
                        and name != self.transitions_at[value.trname]):
                    # We already have an implementation registered.
                    other_implem_at = self.transitions_at[value.trname]
                    raise ValueError(
                        "Error for attribute %s: it defines implementation "
                        "%s for transition %s, which is already implemented "
                        "at %s." % (name, value, transition, other_implem_at))

                implem = self.add_implem(transition, name, value.func)
                self.custom_implems.add(transition.name)
                if value.check:
                    implem.add_hook(Hook(HOOK_CHECK, value.check))
                if value.before:
                    implem.add_hook(Hook(HOOK_BEFORE, value.before))
                if value.after:
                    implem.add_hook(Hook(HOOK_AFTER, value.after))

    def get_custom_implementations(self):
        """Retrieve a list of cutom implementations.

        Yields:
            (str, str, ImplementationProperty) tuples: The name of the attribute
                an implementation lives at, the name of the related transition,
                and the related implementation.
        """
        for trname in self.custom_implems:
            attr = self.transitions_at[trname]
            implem = self.implementations[trname]
            yield (trname, attr, implem)

    def add_missing_implementations(self):
        for transition in self.workflow.transitions:
            if transition.name not in self.implementations:
                self.add_implem(transition, transition.name, noop)

    def register_hooks(self, cls):
        for field, value in utils.iterclass(cls):
            if callable(value) and hasattr(value, 'xworkflows_hook'):
                self.register_function_hooks(value)

    def register_function_hooks(self, func):
        """Looks at an object method and registers it for relevent transitions."""
        for hook_kind, hooks in func.xworkflows_hook.items():
            for field_name, hook in hooks:
                if field_name and field_name != self.state_field:
                    continue
                for transition in self.workflow.transitions:
                    if hook.applies_to(transition):
                        implem = self.implementations[transition.name]
                        implem.add_hook(hook)

    def _may_override(self, implem, other):
        """Checks whether an ImplementationProperty may override an attribute."""
        if isinstance(other, ImplementationProperty):
            # Overriding another custom implementation for the same transition
            # and field
            return (other.transition == implem.transition and other.field_name == self.state_field)

        elif isinstance(other, TransitionWrapper):
            # Overriding the definition that led to adding the current
            # ImplementationProperty.
            return (
                other.trname == implem.transition.name
                and (not other.field or other.field == self.state_field)
                and other.func == implem.implementation)

        return False

    def fill_attrs(self, attrs):
        """Update the 'attrs' dict with generated ImplementationProperty."""
        for trname, attrname in self.transitions_at.items():

            implem = self.implementations[trname]

            if attrname in attrs:
                conflicting = attrs[attrname]
                if not self._may_override(implem, conflicting):
                    raise ValueError(
                        "Can't override transition implementation %s=%r with %r" %
                        (attrname, conflicting, implem))

            attrs[attrname] = implem
        return attrs

    def transform(self, attrs):
        """Perform all actions on a given attribute dict."""
        self.collect(attrs)
        self.add_missing_implementations()
        self.fill_attrs(attrs)


class WorkflowMeta(type):
    """Base metaclass for all Workflows.

    Sets the 'states', 'transitions', and 'initial_state' attributes.
    """

    def __new__(mcs, name, bases, attrs):

        state_defs = attrs.pop('states', [])
        transitions_defs = attrs.pop('transitions', [])
        initial_state = attrs.pop('initial_state', None)

        new_class = super(WorkflowMeta, mcs).__new__(mcs, name, bases, attrs)

        new_class.states = _setup_states(state_defs, getattr(new_class, 'states', []))
        new_class.transitions = _setup_transitions(
            transitions_defs,
            new_class.states,
            getattr(new_class, 'transitions', []),
        )
        if initial_state is not None:
            new_class.initial_state = new_class.states[initial_state]

        return new_class


class BaseWorkflow(object):
    """Base class for all workflows.

    Attributes:
        states (StateList): list of states of this Workflow
        transitions (TransitionList): list of Transitions of this Workflow
        initial_state (State): initial state for the Workflow
        implementation_class (ImplementationWrapper subclass): class to use
            for transition implementation wrapping.

    For each transition, a ImplementationWrapper with the same name (unless
    another name has been specified through the use of the @transition
    decorator) is provided to perform the specified transition.
    """
    implementation_class = ImplementationWrapper

    def log_transition(self, transition, from_state, instance, *args, **kwargs):
        """Log a transition.

        Args:
            transition (Transition): the name of the performed transition
            from_state (State): the source state
            instance (object): the modified object

        Kwargs:
            Any passed when calling the transition
        """
        logger = logging.getLogger('xworkflows.transitions')
        try:
            instance_repr = u(repr(instance), 'ignore')
        except (UnicodeEncodeError, UnicodeDecodeError):
            instance_repr = u("<bad repr>")
        logger.info(
            u("%s performed transition %s.%s (%s -> %s)"), instance_repr,
            self.__class__.__name__, transition.name, from_state.name,
            transition.target.name)


# Workaround for metaclasses on python2/3.
# Equivalent to:
# Python2
#
# class Workflow(BaseWorkflow):
#     __metaclass__ = WorkflowMeta
#
# Python3
#
# class Workflow(metaclass=WorkflowMeta):
#     pass

Workflow = WorkflowMeta('Workflow', (BaseWorkflow,), {})


class StateWrapper(object):
    """Slightly enhanced wrapper around a base State object.

    Knows about the workflow.
    """
    def __init__(self, state, workflow):
        self.state = state
        self.workflow = workflow
        for st in workflow.states:
            setattr(self, 'is_%s' % st.name, st.name == self.state.name)

    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self.state == other.state
        elif isinstance(other, State):
            return self.state == other
        elif is_string(other):
            return self.state.name == other
        else:
            return NotImplemented

    def __ne__(self, other):
        return not (self == other)

    def __str__(self):
        return self.state.name

    def __repr__(self):
        return '<%s: %r>' % (self.__class__.__name__, self.state)

    def __getattr__(self, attr):
        if attr == 'state':
            raise AttributeError(
                'Trying to access attribute %s of a non-initialized %r object!'
                % (attr, self.__class__))
        else:
            return getattr(self.state, attr)

    if not is_python3:
        def __unicode__(self):
            return u(str(self))

    def __hash__(self):
        # A StateWrapper should compare equal to its name.
        return hash(self.state.name)

    def transitions(self):
        """Retrieve a list of transitions available from this state."""
        return self.workflow.transitions.available_from(self.state)


class StateProperty(object):
    """Property-like attribute holding the state of a WorkflowEnabled object.

    The state is stored in the internal __dict__ of the instance.
    """

    def __init__(self, workflow, state_field_name):
        super(StateProperty, self).__init__()
        self.workflow = workflow
        self.field_name = state_field_name

    def __get__(self, instance, owner):
        """Retrieve the current state of the 'instance' object."""
        if instance is None:
            return self
        state = instance.__dict__.get(self.field_name,
                                      self.workflow.initial_state)
        return StateWrapper(state, self.workflow)

    def __set__(self, instance, value):
        """Set the current state of the 'instance' object."""
        try:
            state = self.workflow.states[value]
        except KeyError:
            raise ValueError("Value %s is not a valid state for workflow %s." % (value, self.workflow))
        instance.__dict__[self.field_name] = state

    def __str__(self):
        return 'StateProperty(%s, %s)' % (self.workflow, self.field_name)


class StateField(object):
    """Indicates that a given class attribute is actually a workflow state."""
    def __init__(self, workflow):
        self.workflow = workflow


class WorkflowEnabledMeta(type):
    """Base metaclass for all Workflow Enabled objects.

    Defines:
    - one class attribute for each the attached workflows,
    - a '_workflows' attribute, a dict mapping each field_name to the related
        Workflow,
    - a '_xworkflows_implems' attribute, a dict mapping each field_name to a
        dict of related ImplementationProperty.
    - one class attribute for each transition for each attached workflow
    """

    @classmethod
    def _add_workflow(mcs, field_name, state_field, attrs):
        """Attach a workflow to the attribute list (create a StateProperty)."""
        attrs[field_name] = StateProperty(state_field.workflow, field_name)

    @classmethod
    def _find_workflows(mcs, attrs):
        """Finds all occurrences of a workflow in the attributes definitions.

        Returns:
            dict(str => StateField): maps an attribute name to a StateField
                describing the related Workflow.
        """
        workflows = {}
        for attribute, value in attrs.items():
            if isinstance(value, Workflow):
                workflows[attribute] = StateField(value)
        return workflows

    @classmethod
    def _add_transitions(mcs, field_name, workflow, attrs, implems=None):
        """Collect and enhance transition definitions to a workflow.

        Modifies the 'attrs' dict in-place.

        Args:
            field_name (str): name of the field transitions should update
            workflow (Workflow): workflow we're working on
            attrs (dict): dictionary of attributes to be updated.
            implems (ImplementationList): Implementation list from parent
                classes (optional)

        Returns:
            ImplementationList: The new implementation list for this field.
        """
        new_implems = ImplementationList(field_name, workflow)
        if implems:
            new_implems.load_parent_implems(implems)
        new_implems.transform(attrs)

        return new_implems

    @classmethod
    def _register_hooks(mcs, cls, implems):
        for implem_list in implems.values():
            implem_list.register_hooks(cls)

    def __new__(mcs, name, bases, attrs):
        # Map field_name => StateField
        workflows = {}
        # Map field_name => ImplementationList
        implems = {}

        # Collect workflows and implementations from parents
        for base in reversed(bases):
            if hasattr(base, '_workflows'):
                workflows.update(base._workflows)
                implems.update(base._xworkflows_implems)

        workflows.update(mcs._find_workflows(attrs))

        # Update attributes with workflow descriptions, and collect
        # implementation declarations.
        for field, state_field in workflows.items():
            mcs._add_workflow(field, state_field, attrs)

            implems[field] = mcs._add_transitions(
                field, state_field.workflow, attrs, implems.get(field))

        # Set specific attributes for children
        attrs['_workflows'] = workflows
        attrs['_xworkflows_implems'] = implems

        cls = super(WorkflowEnabledMeta, mcs).__new__(mcs, name, bases, attrs)
        mcs._register_hooks(cls, implems)
        return cls


class BaseWorkflowEnabled(object):
    """Base class for all objects using a workflow.

    Attributes:
        workflows (dict(str, StateField)): Maps the name of a 'state_field' to
            the related Workflow
    """


# Workaround for metaclasses on python2/3.
# Equivalent to:
# Python2
#
# class WorkflowEnabled(BaseWorkflowEnabled):
#     __metaclass__ = WorkflowEnabledMeta
#
# Python3
#
# class WorkflowEnabled(metaclass=WorkflowEnabledMeta):
#     pass

WorkflowEnabled = WorkflowEnabledMeta('WorkflowEnabled', (BaseWorkflowEnabled,), {})




          

      

      

    

  _static/up-pressed.png





nav.xhtml

    
      Table of Contents


      
        		
          XWorkflows
        


        		
          Reference
          
            		
              Defining a workflow
              
                		
                  Accessing Workflow states and transitions
                


              


            


            		
              Using a workflow
              
                		
                  Accessing the current state
                


              


            


            		
              Using transitions
              
                		
                  Defining a transition implementation
                


                		
                  Controlling transitions
                


                		
                  Hooks
                


                		
                  Checking transition availability
                


                		
                  Logging transitions
                


                		
                  Advanced customization
                


              


            


          


        


        		
          Internals
          
            		
              Exceptions
            


            		
              States
              
                		
                  The State class
                


                		
                  The StateWrapper class
                


                		
                  The StateProperty class
                


              


            


            		
              Workflows
              
                		
                  Workflow definition
                


                		
                  Workflow attributes
                


              


            


            		
              Applying workflows
            


            		
              Customizing transitions
              
                		
                  Hooks
                


                		
                  Advanced customization
                


                		
                  Collecting the ImplementationProperty
                


              


            


          


        


        		
          ChangeLog
          
            		
              1.1.1 (unreleased)
            


            		
              1.1.0 (2021-04-29)
            


            		
              1.0.4 (2014-08-11)
            


            		
              1.0.3 (2014-01-29)
            


            		
              1.0.2 (2013-09-24)
            


            		
              1.0.1 (2013-09-24)
            


            		
              1.0.0 (2013-04-29)
            


            		
              0.4.1 (2012-08-03)
            


            		
              0.4.0 (2012-08-02)
            


            		
              0.3.2 (2012-06-05)
            


            		
              0.3.1 (2012-05-29)
            


            		
              0.3.0 (2012-04-30)
            


            		
              0.2.4 (23 04 2012)
            


            		
              0.2.3 (15 04 2012)
            


            		
              0.2.1 (26 03 2012)
            


            		
              0.1.0 (08 09 2011)
            


          


        


      


    
  

_static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/up.png





_static/comment-close.png





_static/file.png





_static/minus.png





_static/down.png





_static/plus.png





_static/ajax-loader.gif





